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We study the paramagnetic side of the phase diagram of the cobaltates, Na,CoO,, using an implementation
of the cellular dynamical mean-field theory with a noncrossing approximation impurity solver for the one-band
Hubbard model on a triangular lattice. At low doping we find that the low-energy physics is dominated by a
quasi-dispersionless band generated by strong correlation physics. At half filling, we find a metal-insulator
transition at a critical value of the on-site interaction U,=5.6 = 0.15¢ which depends weakly on the cluster size.
The onset of the metallic state occurs through the growth of a coherence peak at the chemical potential. Away
from half filling, in the electron-doped regime, the system is metallic with a large continuous Fermi surface as
seen experimentally. Upon hole doping, a quasi-non-dispersing band emerges at the top of the lower Hubbard
band and controls the low-energy physics. This band is a clear signature of non-Fermi-liquid behavior and
cannot be captured by any weakly coupled approach. This quasi-dispersionless band, which persists in a certain
range of dopings, has been observed experimentally. We also investigate the pseudogap phenomenon in the
context of a triangular lattice and propose a general framework for discussing the pseudogap problem. This
framework involves a momentum-dependent characterization of the low-energy physics and links the appear-
ance of the pseudogap to a reconstruction of the Fermi surface without invoking any long-range order or
symmetry breaking. Within this framework we predict the existence of a pseudogap for the two-dimensional

Hubbard model on a triangular lattice in the weakly hole-doped regime.
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I. INTRODUCTION

Charge carriers in the cobaltates, Na CoO,, are located in
two-dimensional CoO, layers separated by insulating layers
of Na* ions which act as electron donors. Their structure is a
triangular net of edge-sharing oxygen octahedra with the Co
atoms occupying the center and the Na atoms playing the
role of electron donors. The octahedral symmetry around the
Co ions results in a splitting of the d-orbitals in two e, and
three lower-lying #,, orbitals. The trigonal distortion of the
Co0, layers further splits the #,, orbitals into one a;, and
two lower e!.! The valence of the cobaltate ions is Co*™
which means that the Fermi surface will lie in the a,, orbital
which will range from half to fully filled. Consequently, the
cobaltates constitute a realization of strongly correlated elec-
tron physics on a triangular lattice. Across their phase dia-
gram they exhibit a wide range of behavior” ranging from a
paramagnetic Fermi liquid at low Na concentration x, a
strange Fermi liquid with Curie-Weiss magnetic susceptibil-
ity for high x and a singular insulating state at x=0.5. While
the paramagnetic metal exhibits some properties akin to that
of a Fermi liquid, the cobaltates still remain strongly corre-
lated systems. For example, experiment® and theory* place
the hopping matrix element and the on-site repulsion at ¢
=0.2 eV and U=4 eV, respectively.

Various angle resolved photoemission spectroscopy
(ARPES) studies, which suggest a Fermi surface which con-
sists only of a large a,, hole pocket with the e, orbitals lying
under the Fermi surface, have been performed by Qian et
al.’ Yang et al..’ and Qian et al.” This is in contrast with
LDA calculations' which suggest the existence of peripheral
e! hole pockets. In an effort to resolve this discrepancy, sev-
eral multiband dynamical mean-field theory (DMFT) studies
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have been performed by Ishida e al.® and Marianetti et al.’
Finally a few cellular DMFT (CDMFT) calculations'®!! ad-
dress mostly the Mott transition on a triangular lattice or
compare different impurity solvers.

Motivated by the cobaltates, we investigate the properties
of strong electron correlation on a triangular lattice. Of par-
ticular interest is the nature of the Mott transition at half
filling on such a lattice. A triangular lattice offers an ideal
playground for exploring the Mott transition as a result of the
inherent magnetic frustration that is present. We find that a
critical value of U=5.7¢ separates the paramagnetic, insulat-
ing and metallic phases. Away from half filling we find a
metallic phase characterized by a large Fermi surface on the
electron-doped side, as observed experimentally, and a
strongly correlated metal with a low-energy physics con-
trolled by a quasidispersionless band on the hole-doped side.

The paper is organized in three main sections. In Sec. II
we give an overview of the computational scheme, the clus-
ter dynamical mean-field theory with the noncrossing ap-
proximation (NCA) as the impurity solver in the context of
the one-band Hubbard model. In Sec. III we discuss the two
main issues related to the consistency of the method: the
proper periodization procedure to obtain physically meaning-
ful lattice quantities and the cluster size dependence of the
results. We show that, for a given small cluster size, the
method breaks down at certain filling values, and we argue
that the cluster size independence should be the ultimate con-
sistency criterion. In Sec. IV we present the results of the
simulations. In Sec. IV A, we show the existence of a qua-
sidispersionless low-energy band, which is a signature of
strong correlations and is incompatible with standard Fermi-
liquid physics. In Sec. IV B, we discuss the Mott transition
on the triangular lattice. Finally, in Sec. IV C, we argue for
the existence of a pseudogap at low hole doping.
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II. DESCRIPTION OF THE METHOD

We start with the one-band Hubbard model,

H=~12 clcig+cc+UX nn;, (1)
o.(i.j) i

where 7 is the matrix element for hopping between nearest-
neighbor sites, (i,j), and U is the on-site repulsive interac-
tion. We assume that the single-band Hubbard model on a
triangular lattice captures the main features of strongly cor-
related physics in the presence of magnetic frustration. We
restrict our study to the paramagnetic state,

<n,¢> = <niT> =n/2, (2)

which is consistent with the experimental observations in
cobaltates for x<<0.5.

As a computational tool, we use in our investigation a
real-space cluster generalization of DMFT.!? The DMFT has
been a very successful tool in investigating many aspects of
strongly correlated systems. In this method one single site is
treated as an impurity embedded in an effective bath consist-
ing of the rest of the sites the properties of which are cap-
tured by the hybridization function. It is exact in infinite
dimensions or more precisely in infinite coordination number
z, and it can successfully describe the antiferromagnetic or-
der. However for many applications it is necessary for the
short-range (few lattice site) correlation to be described ac-
curately. In the cluster DMFT method (CDMFT),"? a cluster
extending in a small number of sites is treated as the impu-
rity and therefore the local (cluster) degrees of freedom are
treated exactly. The rest of the lattice, the bath, is described
by a multicomponent hybridization function.

All cluster-DMFT-based algorithms contain the following
major components:

(i) An impurity solver, which evaluates the cluster Green
function from the hybridization function.

(i) A self-consistency condition which expresses the hy-
bridization function with respect to the cluster Green func-
tion.

(iii) A periodization procedure which connects the lattice
quantities with the cluster quantities.

A. Impurity solver

The impurity solver evaluates the cluster Green function,
given the “external” hybridization function. Various impurity
solvers have been proposed in the literature such as exact
diagonalization (ED) and quantum Monte Carlo. However
the former suffers from poor frequency resolution due to the
size of the effective bath and the latter can only be imple-
mented in imaginary time and an analytic continuation is
required to obtain real time properties. A real time impurity
solver with good frequency resolution is the NCA, which is a
first-order perturbation theory with respect to the hybridiza-
tion function. The pictures that one obtains from using dif-
ferent impurity solvers are somehow complementary. To ob-
tain a more complete description of the Mott physics, a
comparison between results obtained with various ap-
proaches is necessary. It has the advantage of being very fast
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and relatively easy to implement. The NCA has been a valu-
able tool for extracting the physics of the Anderson impurity
models. The NCA equations can be obtained by using the
slave boson method,'* and they can be expressed with re-
spect to the pseudoparticle resolvents G,,, and their self-
energies 2, where m,n are the indices representing the
eigenstates of the cluster. The NCA equations, which are
used to evaluate the updated resolvent self-energies along
with the cluster Green function G, for a given hybridization
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The Greek indices correspond to cluster degrees of freedom

(site and spin), FT"”=(m|cV|m') are the matrix elements of
the destruction operator and f(£) is the Fermi function. The
resolvents can be obtained from the self-energy using the
Dyson equation,

Gplio) =[(io-N1-E-3]}, (5)
where E is the diagonal matrix of the clusters eigenenergies
and A, an artifact of the slave-boson approach, is chosen for
convenience.

In the paramagnetic disordered state, both the spin and the
irreducible representation of the geometrical symmetry
group are good quantum numbers and can be used to label
the cluster eigenstates,

Im) = |N,S%S.,7, 7, E), (©6)

where r and r,, denote the irreducible representation, and it’s
row, respectively, and the rest follow standard notation. All
but the energy E are good quantum numbers, and they cannot
be affected by the bath. Furthermore all resolvents with the
same N,S%,r but different S, and r,, are the equal to one
another.
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B. Self-consistency condition

The self-consistency condition generates a new hybridiza-
tion function, i.e., a new effective environment for the impu-
rity cluster, starting from a given cluster Green function G,
and taking into account the geometry of the lattice and the
noninteracting hopping matrix. Within the CDMFT scheme,
the self-consistency condition reads

DIMI-EK)]'=M'-A-T)", (7)
K

where the matrix E(K) is the Fourier transform of the inter-
cluster hopping matrix T;;, with / and J being indices that
label the clusters inside the superlattice and K is the super-
lattice momentum. The cluster cumulant M,z can be ex-
pressed in terms of the intracluster hopping matrix T(=T}; as

M'=G'+A+T,. (8)

C. Lattice periodization

Once the cluster quantities such as the cumulant or the
self-energy have been obtained, the corresponding lattice
quantities need to be reconstructed.'® A good estimate of
these lattice quantities can be obtained by averaging over all
the possible ways in which a lattice can be covered with
clusters of a given type. For each type of cluster and each
lattice there are a finite number, Ng, of different realizations
of the superlattice, which are related to one another by a
symmetry operation (rotation, translation, or both). Explic-
itly, a lattice quantity Xj,,(x,—Xg), which may be either the
cumulant of the self-energy, can be extracted from the corre-
sponding set of cluster components X(x,,Xp) as

1
Xlall(xa - XB) = FSE XSL(S[Xa]’S[Xﬁ]) > (9)
S

where X5 represents the quantity X for a certain reference
superlattice, S is a symmetry operation relating different
equivalent superlattices to the reference superlattice, and
S[x,] is the new position of site x, after applying the sym-
metry operation. If the positions S[x,] and S[xz] do not be-
long to the same cell of the reference superlattice
XSL(S[XQ],S[xﬁ]) vanishes; otherwise it is given by the cor-
responding cluster component. The momentum dependence
is obtained by a simple Fourier transform,

XP(k) = E Xlatt(xa - Xﬁ)ei(Xa_X’B).k’ (10)
B

where the index P signifies that the quantity X(k) was ob-
tained by applying the periodization procedure.

In this paper, we focus on the cumulant periodization
scheme X=M, in which the lattice Green function is given
by

1

Glau(w.k) = m-

(11)

We also discuss briefly the implications of using the self-
energy periodization scheme. Note that the cluster self-

PHYSICAL REVIEW B 79, 115116 (2009)
(@) (b) Ove
09

FIG. 1. Types of clusters used in the simulation: (a) triangle and
(b) rhomboid.

energy is related to the cluster cumulant through the matrix
equation,
S=(w+u)l-M", (12)

and a similar scalar equation holds for the corresponding
lattice quantities, 3 (k)=(w+u)—M(k)™!. In this scheme the
lattice Green function is given by
1 B 1
w+p—ek) ~Zp(0. k) (M)p(w.k) - ek)’
(13)

Glatt(ws k) =

where the index P implies that M~! is periodized.

In this paper we are going to use two types of clusters: a
triangular three-site cluster and a rhombic four-site cluster
(Fig. 1). Because of paramagnetism and also the geometrical
symmetry, the triangular cluster has 31 independent resol-
vents and 2 independent cluster quantities, whereas the
rhombic cluster has 309 and 5, respectively. Single-site and
two-site clusters have also been considered but convergence
is possible only at higher temperatures. The respective super-
lattices are shown in Fig. 2.

For the triangular cluster, there are only two independent
components, a local X, and the nearest-neighbor one X;. The
corresponding periodization is

Xui(K) = Xo + 2X;a(k),

where a(}():%E?:]cos k; and k;=k,, kzz—%kx+ %ky, and ks
=—%kx—§ky. For the rhombic cluster there are five indepen-
dent components: two local ones, X, and X, corresponding
to the site with three and two neighbors inside the cluster,
respectively, two nearest-neighbors, X; and X, correspond-
ing to one of the sides of the cluster and the diagonal link,
respectively, and one next-to-nearest-neighbor component X,

along the long diagonal of the cluster. The periodization is

Xl = 2522 (2;(1 + lx;)a(k) + 200,

2 2 2
where b(k)=%2?=,cos(k,-—k,-+1), with k;=k,. Since a uniform
paramagnetic phase is assumed, the choice of the cluster is
expected to have a relatively small impact on the physical
quantities for regimes characterized by short correlation
lengths.

III. NUMERICAL SCHEME: CONSISTENCY,
OPTIMIZATION, AND LIMITATIONS

The key feature that makes a DMFT-type treatment appli-
cable is the locality of the correlated physics. In infinite di-
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FIG. 2. (Color online) Triangular (left) and rhomboid (right)
cluster’s superlattices. The black circles represent the superlattice’s
sites.

mensions, the correlations are purely local and can be de-
scribed by a momentum-independent self-energy. In finite
dimensions, the basic assumption is that the correlations are
short ranged and can be captured by a cluster extension of
DMFT. The size of the cluster that would properly capture
the physics is determined by the range of the relevant corre-
lations and cannot be known a priori. Therefore, consistency
checks are a necessary component of any cluster DMFT
treatment. In this section, we show that for the two-
dimensional Hubbard model on a triangular lattice: (A) The
self-energy is not a short-range quantity in the vicinity of the
Mott insulating phase and therefore should not be extracted
from the cluster components. Instead, the renormalized two-
point cumulant satisfies the locality requirement and can be
used for reconstructing the lattice quantities. (B) A cluster
scheme does not work equally well for all doping values. In
particular, for certain doping levels commensurate with the
cluster size the scheme predicts spurious “insulating” states.
We argue that a comparison between results obtained using
clusters of different sizes is crucial. The ultimate consistency
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FIG. 3. Flow diagram for the CDMFT+NCA method. A is the
bath function, 3, is the resolvent self-energy, and G is the cluster
Green function, and the cumulant is M=G~'+A+T,. The flow
starts at the guesses of A (usually with a Gaussian imaginary part)
and ¥ (negative imaginary constant). The impurity solver evaluates
anew 3 from A and the old % and also the cluster Green function.
The self-consistency condition takes as its input the cluster Green
function and the old A to return an updated A. The impurity solver
and self-consistency condition iterate until convergence is reached.
Then the cumulant M is evaluated and periodized. Physical quanti-
ties can be obtained from M (for example, the spectral function)
and X.

Impurity Solver
(NCA)

Self Consistency
Condition

I
new A

criterion is the invariance of results to an increase of the
cluster size.

To solve for the cluster quantities and the resolvents self-
consistently, we start from an initial guess for the imaginary
part of the resolvent self-energies and the hybridization func-
tion. The real part was obtained through the Krammers-
Kronig relationships. One possibility is to start at high tem-
peratures (7= 0.3t) where the method converges very easily
(a constant 3%, and a Gaussian JA ,, is enough) and then
“cool down” progressively using in every step the solution of
the previous step. Usually a two-step process suffices. Once
the initial guess is obtained, the NCA equations [Egs. (3) and
(4)] along with Eq. (5) are used to update 2., and evaluate
the cluster Green function G,,,. From the latter and the self-
consistency condition [Eq. (7)] the hybridization function
A,, is updated. The process iterates until convergence is
reached. The lattice Green function and the corresponding
spectral function are obtained by the periodized cumulant. A
flow diagram of the process is shown in Fig. 3. From the
spectral function, a variety of two-particle properties can be
obtained.

A. Cumulant vs self-energy periodization

Our first task is to test the accuracy of the periodization
procedure and identify the quantity most suitable to be used
in the periodization scheme. Note that the implicit physical
assumption behind periodizing a certain quantity X(x,,Xp) is
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FIG. 4. (Color online) Comparison of the density of states for
the cumulant and self-energy periodization for the triangular cluster
at U=12¢ and T=0.1z.

the short-range nature of that quantity. A long-range quantity
cannot be properly approximated in any way using finite
range cluster components.

To chose the proper periodization procedure, we compare
the density of states (DOS) for cumulant and self-energy
periodization for both three-site and four-site clusters. In the
vicinity of half filling, regardless of the cluster size, the self-
energy periodization results in states lying inside the Mott
gap, as shown in Figs. 4 and 5. These states are clearly
unphysical, as demonstrated by the comparison with the lo-
cal cluster spectral function, which shows a well-defined
clean Mott gap, as shown in Fig. 6. On the other hand, these
midgap states are absent in the cumulant periodization pro-
cedure. This signals that the cumulant is a short-range quan-
tity in the vicinity of the Mott transition, while the self-
energy is not, but contains long-range components that
cannot be captured with a small size cluster.!”

n=0.971 n=1.008
0.15 = Cumulant
Self Energy
o 0.1
o
a
0.05 P} g\
. A
n=1.145 n=1.494
0.15
o 0.1
o
a
0.05
0
-5 0 5 -5 0 5
o/t o/t

FIG. 5. (Color online) Comparison of the density of states for
the cumulant and self-energy periodization for rhombic cluster at
U=12t and T=0.1t.
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FIG. 6. (Color online) Comparison of the local cluster spectral
function, A;;, with the one obtained through cumulant Mp and self-
energy 2 p periodization for the triangular (left) and rhombic clus-
ters (right) at U=12¢ and T=0.1¢. The local cluster spectral function
agrees with that from M p. The one obtained from ,p predicts un-
physical states in the middle of the Mott gap.

In contrast, at large dopings in the Fermi-liquid phase,
where both the self-energy and the cumulant are short-range
quantities, the two methods agree. We conclude that the self-
energy periodization is appropriate away from the Mott tran-
sition, while the cumulant scheme gives consistent results in
a wide range of dopings. In the present study we will use the
cumulant method regardless of filling. The reason for the
failure of the self-energy periodization method is the pres-
ence in the half-filled regime of self-energy divergences'®!8
at w=0 and low temperatures. This divergence of the self-
energy at half filling is intimately linked to the Mott gap.

B. Commensurate insulators

Away from half filling, for certain doping values, there is
a substantial discrepancy between the two clusters. Explic-
itly, our method predicts that around n = 1.25 for the rhombic
cluster and n=1.33 for the triangular cluster, the system be-
comes an insulator, as evidenced by the gap in the density of
states in Figs. 7(a) and 7(b), respectively. Note that it is very
hard to obtain convergence with NCA whenever there is a
sizable gap at the Fermi level, especially for the rhombic
cluster. In this case we have to either increase the tempera-
ture or slightly change the filling so that the gap becomes
partially filled. For this reason we choose n=1.22 as shown
in Fig. 7(a).

To better understand the commensurate insulator phases,
we can analyze the resolvents within NCA and evaluate the
contribution of each cluster state. It is therefore possible to
determine which are the dominant channels through which
the cluster interacts with the bath. The relevant quantity is
the partial occupancy of a particular cluster state,

1(d _
() == — f —ge‘ﬂfnmmem(f). (14)
o) =

Small occupancy signifies that the corresponding resolvent
contributes insignificantly to the cluster spectral function and
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FIG. 7. (Color online) The density of states for both clusters for
(a) n=1.22 and (b) n=1.33.

consequently to the hybridization function. Therefore, the re-
solvents with small occupancy can be ignored, whereas the
ones with large overlap have the dominant contribution to
the dynamics of the system. For the triangular cluster it turns
that there are only seven resolvents with an overlap larger
than 0.01, whereas the rest have occupancy less than 0.0025.
A similar analysis can be performed for the rhombic cluster.
As expected there are more resolvents with substantial occu-
pancy. In Fig. 8 only the dominant ones are plotted which
have occupancy more than 0.1. Their quantum numbers are
shown in Table I. In all cases, we observe that when the
dominant resolvents have fillings i/N, close to the lattice
filling, their partial occupancy peaks and transitions from and
to them become rare, which gives rise to an insulating state.
In the triangular lattice this has a consequence when n
=4/3 because in this case there is only one dominant resol-
vent. As a result, there is no appreciable overlap with any
electronic states, leading thereby to a gap in the spectrum. In
the rhombic cluster, around the critical value n=5/4 there
are two dominant resolvents which means that even though
the transitions are limited, a gap still persists although it is
not as pronounced as in the three-site cluster. We have also
obtained commensurate insulating states for fillings n=2/3,
for the triangular and n=3/4, for the rhombic cluster, but in
this regime convergence is not reached at low temperature.
The presence of such insulating states ultimately points to a
limitation of the finite cluster approach to the Hubbard
model.
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FIG. 8. (Color online) The occupancies (n,,,) as a function fill-
ing for the dominant resolvents in the (a) triangular and (b) rhombic
clusters.

We emphasize that the appearance of the fictitious com-
mensurate insulating states is a consequence of using small
clusters in the numerical calculations. In all the present
implementations of the CDMFT cluster methods for finite
dimensions higher than one, there is always a difficulty re-
lated to the fact that most or all of the cluster sites lie on the
cluster boundaries. To address this large size cluster studies
are necessary in order to clarify all aspects of Mott physics
on the triangular lattice. However, before dealing with the
numerical difficulties of using large clusters, progress can
also be made by making small cluster comparisons for the
following reasons: (a) to show explicitly that some aspects of
the Mott physics in two dimensions are different than their
infinite dimension counterparts and also differ between the
square and the triangular lattice geometries and (b) to give an
estimate of the systematic errors inherent in the finite cluster
size methods. Since DMFT does not provide a small param-
eter to control the accuracy, we argue that information about
this accuracy can be extracted by varying the cluster size.
Furthermore, features that are independent of the cluster size
can be attribute to the underlying lattice physics. For ex-
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TABLE 1. The quantum numbers of the dominant resolvents for the rhombic cluster for U=12¢ and T
=0.1z. Their occupancy is shown in the left panel of Fig. 8. The quantum numbers are explained in the legend

of Table II.
Label N 52 S. r i E
83 3 12 12 By:x 1 -3.07
139 4 0 0 Bz 1 -0.94
172 4 1 1 Bz 1 -0.67
197 4 1 1 By:x 1 -0.65
239 5 12 12 By 1 9.39
269 5 312 312 Bz 1 9.44
297 6 1 1 By 1 21.44
304 7 1/2 1/2 A 1 34.44

ample, the existence and the properties of the Mott insulating
phase at half filling, n=3/3=4/4, can be obtained consis-
tently using various cluster sizes. Moreover, as the on-site
interaction U is reduced, a transition to a metallic state is
consistently observed, with some small cluster size depen-
dence of the critical parameters.

IV. RESULTS

In this section we present our main results. In Sec. IV A,
we show that the two-dimensional Hubbard model on a tri-
angular lattice is a strongly correlated system by demonstrat-
ing that the low-energy physics is controlled by a weakly
dispersing band with spectral weight that can be transferred
over large energy scales. Section IV B is devoted to the char-
acterization of the interaction-controlled Mott metal-
insulator transition at half filling. In contrast to the infinite
dimensional case when a coherence peak develops inside the
Mott gap, we find that the insulator-metal transition is char-
acterized by the complete collapse of the Mott gap followed
by the appearance of a small peak in the density of states.
Finally, in Sec. IV C we investigate the system at low dop-
ings and discuss a perspective on pseudogap physics. We
argue that the pseudogap should not be simply identified by
the depletion of the density of states at the chemical potential
but rather by the change in the location of the low-energy

modes in momentum space as compared with the noninter-
acting system. According to this picture, the pseudogap
phase is essentially characterized by a reconstructed Fermi
surface consisting of small pockets that vanish in the zero
doping limit.

A. Dispersionless low-energy band

The main figure and the inset in Figs. 9 and 10 reveal a
lack of particle-hole symmetry for electron and hole dopings.
This is expected as a triangular lattice does not preserve this
symmetry. While the asymmetry persists regardless of the
cluster size, the details differ. Of particular interest is the
presence of a dispersionless subband residing near the top of
the lower Hubbard band upon hole doping. The occurrence
of such a band is inconsistent with Fermi-liquid behavior: the
chemical potential crosses the band in an extended area in-
stead of at a well-defined curve. This band occurs in both the
triangular and the rhombic clusters; but in the latter it ap-
pears split. This splitting, shown not only in Fig. 11 but also
in the density of states as shown in Fig. 12, may be due to
the higher resolution gained by using the rhombic cluster.

A shadow of this band persists unsplit and with less spec-
tral weight even in the electron-doped regime where the sys-
tem is a normal metal, as shown in Fig. 13. Therefore the
splitting is due to the fact that it crosses the chemical poten-
tial. Consequently, in the triangular lattice, particle hole

TABLE II. The quantum numbers corresponding to the dominant resolvents for the triangular cluster for
U=12t, T=0.1¢. Their occupancy is shown in the left panel of Fig. 8. The quantum numbers are the particle
number N, the spins $? and S., the label of the irreducible r and the corresponding row r,, (Ref. 35), and the

eigenenergy E.

Label N 52 S, r T E
4 2 0 0 A, 1 -2.55
14 3 12 12 E;x,y 1 -0.50
20 3 312 312 Ayiz 1 0.00
24 4 0 0 A, 1 10.85
27 4 1 1 Asiz 1 10.00
30 5 12 12 E;x,y 1 23.00
31 6 0 0 A 1 36.00
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Rhomb, U=12t, T=0.1t
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FIG. 9. (Color online) The evolution of the density of states as a
function of doping in the upper and lower (inset) Hubbard bands.

asymmetry gives rise to a non-Fermi-liquid behavior for hole
doping and metallic behavior (Fig. 13) in the electron-doped
side. This band structure can be compared with experimental
results.!” A full comparison is not possible because only one
band, namely, the a,, is taken into account and the e, is
ignored. However the experiment shows the existence of an
almost flat band with energy —0.6 eV. The present calcula-
tion is evidence that this band may emerge purely because of
strong correlations. Further evidence that this band arises
from purely strong electron correlations comes from the fact
that it is absent in local-density approximation (LDA) and
linear augmented plane-wave (LAPW) calculations [Fig. 3 of
Ref. 19].

Triangle, U=12t, T=0.1t

0.07 - n=1.034
[ ——— n=1.027
- n=1.020
0.06 F ——— n=1.014
[ ——— n=1.008
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0ol E 006 Bl
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w/t
0 oo by vy b
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FIG. 10. (Color online) Evolution of the density of states for the
triangular cluster around half filling for 7=0.17 and U=12¢ in the
electron-doped regime (upper Hubbard band). There is a pseudogap
feature which does not align with the chemical potential (w=0) and
which disappears for a doping of n=3.5%. The inset shows the
density of states in the hole-doped regime (lower Hubbard band),
which exhibits no pseudogap feature.
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Lower Hubbard Band Upper Hubbard Band

—— Rhomb, n=0.94 —— Rhomb, n=1.01
0.2 Triangle, n=0.95 0.2 Triangle, n=1.01
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(%) )
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FIG. 11. (Color online) Comparison of the density of states
between the rthombic and the triangular clusters in the upper and
lower Hubbard bands. There is good agreement in the electron-
doped regime. In the hole-doped regime there is a dispersionless
band which the rhombic clusters resolves as being split.

B. Mott transition

The density of states for high enough U exhibits an
interaction-induced gap around half filling, as shown in Fig.
14. Clearly shown in Fig. 14 is the closing of the gap be-
tween the lower and upper Hubbard bands as the on-site
interaction decreases, indicative of a Mott transition. To pin-
point the precise location of the Mott transition, we estimate
the Mott gap by the discontinuity, Ay, in the chemical po-

r

Triangle

-10 -5 0 5 10

FIG. 12. (Color online) The spectral function as a function of k
and w for U=12t, T=0.1¢, and n=0.99. Upper panel: triangular
cluster. Lower panel: rhombic cluster. Both methods give a disper-
sionless band, but in the rhombic cluster it is resolved in two.
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Triangle

T
-10 -5 0 5 10

FIG. 13. (Color online) Spectral function for U=12z, T=0.1¢,
and n=1.04 for the triangular (upper panel) and rhombic clusters
(lower panel). The chemical potential crosses a narrow band, and
the behavior is metallic. The dispersionless subband at the top of
the lower Hubbard band persists but with less spectral weight and
unsplit.

tential on either side of half filling. Figure 15 displays a
typical calculation of the chemical potential as a function of
the filling for both three-site and four-site clusters. Because
of thermal broadening, this procedure would underestimate
A, which cannot discriminate below energy scales of the
order of kT. For both cluster sizes, the results are consistent
yielding a gap of Au=>5t for U=12¢. As the inset demon-
strates, the discontinuity in the chemical potential across half
filling vanishes at U.=~5.7t. However, Au provides only a
rough estimate of the critical U because the precise magni-
tude of the gap is obscured as shown in Fig. 15. To probe the
transition more directly, we plot the density of states for
different values of U around the estimate obtained from the
chemical-potential analysis. Figure 16 displays clearly that
for U=U,, with U,~5.75¢ and U,.=~4.75t for the triangle
and rhombic clusters, respectively, the system is an insulator,
whereas for U<U, a Drude peak emerges at the chemical
potential. Note that the density of states near the chemical
potential remains unchanged (relative to its value for U
> U,) although the density of states at the chemical potential
develops a nonzero value as a transition is made to a metallic
state. Consequently, the states that fill in the Mott gap and
give rise to the coherence peak arise from spectral weight
transfer from high energy, the essence of Mottness. This is
illustrated in Figs. 17 and 18 which compare the spectral
function right before and after the transition for the triangular
and rhombic clusters, respectively. Such a redistribution of
spectral weight far from the chemical potential near the Mott
transition has been recently observed in the manganites.?
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0.1 0.1
U=10t, n=0.99 U=10t, n=1.01
0.05 0.05
0 0
-5 0 5 -5 0 5
0.1 0.1
U=8t, n=0.99 U=8t, n=1.01
0.05 0.05
0 0
-5 0 5 -5 0 5
0.1 0.1
U=7t, n=0.99 U=7t, n=1.01
0.05 0.05
0 0
-5 0 5 -5 0 5
w/t w/t

FIG. 14. The density of states in units of ™' in the vicinity of
half filling for the triangular cluster. The gap closes with decreasing
U.

The operative mechanism for the Mott transition in the
three-site and four-site cluster analyses stands in contrast to
the scenario predicted by DMFT.'? In this scenario a coher-
ent peak of constant height exists at the chemical potential,
which successively narrows as U increases to U,. For
U>U,, the peak vanishes and the upper and lower Hubbard

Chemical potential vs filling (U=12t, T=0.1t)

i 4-site Cluster
i 3-site Cluster
12 |~
10 |~
B ,\5 O
- - Za
38_— 23_ o
- S 2F .
- Q1— .
6 (“5’0 .
i §_1_UC:5.74
| b
4 4 6 8 10 12
| utt
4 oy s
0.9 1 1.1 1.2 1.3 1.4 1.5

n

FIG. 15. (Color online) The chemical potential as a function of
filling for the three-site and four-site clusters at U=12¢ and T
=0.1z. There is agreement anywhere apart from the commensurate
fillings n=4/3 and n=5/4, respectively. Inset: the evolution of the
Mott gap as a function of the interaction strength U for the trian-
gular cluster. The gap is linear in U and vanishes at U,.=5.74t.

115116-9



GALANAKIS, STANESCU, AND PHILLIPS
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()
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FIG. 16. (Color online) (a) Density of states around the Mott
transition for the triangular cluster at n=1 and 7=0.17. As U de-
creases, the Drude peak around the chemical potential gradually
loses weight until it turns into a gap. The transition occurs at some
U.=5.75t. (b) Density of states around the Mott transition for the
rhombic cluster at 7=0.12¢, n=1, and U.=4.5¢.

bands become well separated. CDMFT with exact diagonal-
ization in the square lattice®! offers a different scenario: first
a pseudogap opens at the chemical potential which smoothly
grows to form a full Mott gap at the critical U. Therefore a
(pseudo)gap always exists in the square lattice, unless frus-
tration, which is described by #', is introduced,?>?? in which
case the gap closes due to the merging of the two bands. In
the triangle, there is no formation of a pseudogap. Instead the
coherence peak at the chemical potential loses weight Z as U
increases and is smoothly replaced by a gap which broadens
as the two bands separate. This is consistent with results
obtained with CDMFT and ED.!?

C. Pseudogap

In light of the physics in the cuprates, one of the main
questions that needs to be addressed is whether or not a Mott
system on a triangular lattice exhibits a pseudogap. We focus
here on the single-particle density of states as a function of
filling. In the triangular lattice, there is only indirect evidence
from a boson analysis of the optical conductivity for a
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-10 -5 0 5 10

FIG. 17. (Color online) The spectral function at half filling and
T=0.1¢ as a function of w and k along the I' > K— M — I path for
U=6t (upper panel) and U=5.5¢ (lower panel) as obtained from the
triangular cluster. The spectral weight mostly from energy around
4.5¢ is transferred to the chemical potential during the transition.

pseudogap in the paramagnetic phase (n<<1.5),>*?> which
disappears in the strange metal phase (n>1.5). However nu-
merical simulations suggest otherwise. Results obtained by
dynamical cluster approximation with the NCA or fluctuation
exchange approximation on an anisotropic triangular lattice
suggest the absence of a pseudogap. Instead, with increasing
frustration (measured by ¢'), the frustration due to nonlocal
correlations suppresses antiferromagnetic order and gives
rise to heavy quasiparticles near half filling, and a pseudogap
in the density of states is replaced by a quasiparticle peak at
the Fermi level. A similar work?’ on the anisotropic triangu-
lar lattice for #'/¢t=0.8 has also shown the emergence of
heavy quasiparticles at the Fermi level.

Our results for the single-particle density of states on ei-
ther side of half filling are summarized in Figs. 9 and 10.
Although a diplike features exists for both the three-site and
four-site clusters, it is displaced from the chemical potential.
For higher dopings, the density of states is smooth in the
vicinity of the chemical potential. Consequently, we find an
absence of a pseudogap near half filling on a triangular lat-
tice. This result is consistent with the one obtained for the
triangular lattice by CDMFT using exact diagonalization cal-
culations as the impurity solver.!® We traced the origin of the
diplike feature to an energy splitting of two resolvents in the
triangular lattice (three in the rhombic) with total spin differ-
ing by 1. The relevant energy scale is J=67>/ U. To probe this
feature further, we calculated its evolution as the temperature
is lowered. As is evident from Fig. 19, as the temperature is
lowered, the diplike feature remains below the chemical po-
tential and more importantly the peak at the chemical poten-
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-10 -5 0 5 10

FIG. 18. (Color online) The spectral function at half filling and
T=0.1¢ as a function of w and k along the I’ K— M — I path for
U=5.5t (upper panel) and U=4.5¢ (lower panel) as obtained from
the rhombic cluster. The spectral weight mostly from energy around
4.5t is transferred to the chemical during the transition.

tial sharpens, as would be expected for a metallic state. It has
to be noted that in this approximation there is an ambiguity
in the determination of the Fermi level or the order of the
temperature (7=0.07¢). However the pseudogap feature de-
velops in frequency w=—3T which is well away. The metal-
lic behavior is also consistent with the spectral function of
the rhombic cluster as shown in Fig. 20. There we see that

Triangle, n=1.02

0.07 [

. T=0.30t

[ ——— T=0.25t

0.06 - T=0.20t

[ ———— T=0.15t

[ ——— T=0.10t

0.05 [ ———— T=0.07t
~ 004 -
g f
a 0.03 |
0.02 |
0.01 |

-1.5 -1 -0.5 0 0.5 1 1.5
w/t

FIG. 19. (Color online) Evolution of the DOS around the chemi-
cal potential for n=1.02 using the triangular cluster. The pseudogap
feature is dispersed as the temperature increases.
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FIG. 20. (Color online) Comparison of the spectral function at
half filling (top), 1% (middle) and 3% (bottom) hole doping, for the
rhombic cluster at U=12¢ and 7=0.1¢.

there is always a band that crosses the Fermi level even
though the quasiparticle weight decreases closer to half fill-
ing. Consequently, using the diplike feature in the density of
states as the criterion for the existence of a pseudogap, we
conclude that no pseudogap exists for the Hubbard model on
a triangular lattice for either electron or hole doping.
However, this analysis is incomplete. Let us approach the
pseudogap problem from a different perspective. In the un-
doped cuprates, the quasiparticle dispersion below the Mott
gap is characterized by four maxima at the (xm/2, * 7/2)
points in the Brillouin zone, as revealed by ARPES measure-
ments on Ca,Cu0,Cl,.28 This feature is also present in the
half-filled Hubbard model on a square lattice.!” For a weakly
(hole) doped system, if one adopts the naive picture of a
rigid band shift, one would expect the chemical potential to
move to the top of the lower Hubbard band and intersect it
somewhere in the vicinity of the four minima. The resulting
Fermi surface would consist of four small hole pockets in the
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Boundary of LHB

Boundary of UHB

FIG. 21. (Color online) The boundary of the lower (top panel)
and upper Hubbard bands (bottom panel) for U=12¢ and T=0.1z.

vicinity of the (*£/2, = 7/2) points, while the rest of the
large Fermi surface observed in optimally doped and over-
doped cuprates (or at large doping values in the calculations
for the Hubbard model) would be completely obliterated.
That is, the low-energy excitations are gaped everywhere in
the Brillouin zone, except on the boundary of the small
Fermi pockets. This picture seems to be consistent with
ARPES measurements on underdoped cuprates,” as well as
the infrared Hall effect®®3! and quantum oscillation
measurements.’> Nonetheless, strong-coupling calculations
show that the naive rigid band picture is, in fact, incorrect
and that strong correlations play a crucial role in pseudogap
physics.

One of the essential aspects of strong correlations is spec-
tral weight transfer. To illustrate its role, let us approach the
pseudogap problem for Hubbard model on a triangular lattice
starting from the Mott insulating phase. Note that, in contrast
to the square-lattice model, in this case particle-hole symme-
try is always absent and the antiferromagnetic interactions
are frustrated. In Fig. 21 we show the top of the lower Hub-
bard band (top panel) and the bottom of the upper Hubbard
band (bottom panel) for a half-filled system with U=12¢. The
two bands are separated by a Mott gap of about 57, and the
chemical potential sits in the middle of the gap. The two
surfaces are defined by the smallest frequencies at which the
spectral function exceeds a certain small threshold SA. Varia-
tions in 6A produce only small shifts of the two surfaces, but
their shapes remain essentially the same. First, let us focus
on the upper Hubbard band. As shown in Fig. 21, it is char-
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FIG. 22. (Color online) Comparison of the spectral function for
half filling (top), 1% (middle) and 3% (bottom) electron doping, for
the rthombic cluster at U=12¢ and 7=0.1r.

acterized by a set of minima along a large closed curve
around the I' point, not far from the Fermi surface corre-
sponding to that of the noninteracting half-filled system. A
small electron doping would move the chemical potential
near this set of minima of the upper Hubbard band. In the
rigid band picture, one ends up with two almost circular
Fermi surfaces that define a narrow electron ring. However,
our strong-coupling calculation leads to a different picture.
Shown in Fig. 22 is the spectral function along the I'— K
— M —T path in the Brillouin zone and a small frequency
window about the chemical potential for two small doping
values. For comparison, we also show the bottom of the
upper Hubbard band for the insulator (upper panel) within a
similar frequency window. Note that for the insulator the
bottom of the band corresponds to some middle points be-
tween I" and K and between M and I'. In the vicinity of the
I' point, there is no spectral weight within our frequency
window (see also Fig. 21). However, once we dope the sys-
tem, some spectral weight is transferred from high to low
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energies so that a low-energy band clearly forms in the vi-
cinity of I" just below the chemical potential. As a result, the
strongly correlated narrow band that controls the low-energy
physics disperses across the chemical potential generating a
large Fermi surface consistent with the Luttinger theorem. A
crucial difference from the square-lattice case is that the an-
isotropy along this large Fermi surface (or along the line
defining the minima of the upper Hubbard band for the in-
sulator) is very weak. By contrast, for the square lattice there
is a qualitative difference between the (7/2,7/2) and the
(0,) regions of the Brillouin zone as illustrated, for ex-
ample, by the existence of minima near the nodal points.
This lack of anisotropy leads to the sudden appearance of a
large Fermi surface upon doping and thus to the absence of a
pseudogap.333

The situation appears somehow different in the case of the
lower Hubbard band. As shown in Fig. 21, the top of the
lower Hubbard band is extremely flat and extends over a
significant portion of momentum space, all around the
boundary of the Brillouin zone. Very weak maxima can be
identified near the K points. In this case, the rigid band pic-
ture would suggest that a weakly hole-doped system is char-
acterized by low-energy excitations that extend over a large
portion of the Brillouin zone and that small Fermi pockets
would possibly form near the K points and extend rapidly
with doping. Again, in the vicinity of I" there is no spectral
weight at low energy. However, in contrast to the upper Hub-
bard band, this lack of low-energy excitations at small mo-
menta persists upon doping. Shown in Fig. 20 is the low-
energy spectral function along the same I'— K— M — I path
for the insulator (upper panel) and two values of doping. The
relevant spectral weight transfer contributes this time to the
reshaping of the low-energy narrow band that exists at mo-
menta far from the I" points. At increased doping values, this
band becomes more dispersive and generates a large Fermi
surface consistent with the noninteracting Fermi surface of a
system with the same filling factor. Nonetheless, at very
small doping values, several questions remain. First, it seems
that the chemical potential crosses the narrow band in an
extended area of the Brillouin zone rather than along a well-
defined Fermi line. This stands in sharp contradiction with
Fermi-liquid theory. However, one has to take into account
that our results are obtained at a finite temperature of the
order of (.17, and thus the energy resolution is severely lim-
ited. To establish exactly the position of the Fermi surface at
low dopings it would require a much better energy resolution
and, consequently a much lower temperature, would be nec-
essary. The second question concerns the existence of a
pseudogap. One typically understands the pseudogap as a
reduction in the number of low-energy modes below a cer-
tain energy scale. Here we propose a slightly different view.
We define the pseudogap phase as a physical state occurring
close to a Mott insulating state and characterized by the ex-
istence of small Fermi pockets with an area proportional to
the doping level x=1-n. By contrast, a normal Fermi liquid
is characterized by a large Fermi surface with an area that is
related, via the Luttinger theorem, to the filling n. Conse-
quently, one should view a system in the pseudogap phase as
a doped Mott insulator. At the same time, the system repre-
sents a renormalized Fermi liquid characterized by a recon-
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structed Fermi surface. From this perspective, the weakly
hole-doped Hubbard model on a triangular lattice is in the
pseudogap state. Within the energy and momentum reso-
lution of the present method, the Fermi surface appears as a
set of small pockets around the K points that expand rapidly
upon doping. A normal Fermi liquid is established at a dop-
ing level of a few percent. We emphasize that a crucial con-
dition for the realization of this pseudogap phase was the
existence of the small anisotropy in the lowest-energy exci-
tations of the Mott insulator. To study in detail the formation
and the evolution of the hole pockets, calculations using
larger clusters (i.e., having a better momentum resolution)
and lower temperatures are necessary.

V. CONCLUSIONS

We have studied a strongly correlated electron system on
a triangular lattice using an implementation of the CDMFT
+NCA scheme. The key technical aspects of this implemen-
tation are presented in detail. Numerical results are obtained
for two types of clusters containing three and four sites, re-
spectively. We stress that the cluster size analysis is a re-
quired step in any cluster DMFT-type calculation and argue
that the relative invariance of the result against increasing the
cluster size is the ultimate consistency criterion. The funda-
mental issue concerns the short-range vs long-range charac-
ter of the electron correlations and the nature of the quantity
that properly describes them. We find that the self-energy is
not a short-range quantity in the vicinity of half filling and
therefore cannot be captured using the cluster components.
However, within our momentum and energy resolution, we
find that the cumulant satisfies the locality requirements and
can be used for reconstructing the lattice quantities. In this
context, a very high priority for future cluster DMFT studies
should be to establish the relevant range for the self-energy
and the cumulant in various parameter regimes. Larger clus-
ter calculations are required to clarify this point. Nonethe-
less, the task is of pivotal importance because if in a certain
regime both the self-energy and the cumulant are long-
ranged quantities the presently available real-space and
momentum-space cluster DMFT schemes are not applicable.

At low doping values, we find that the Hubbard model on
a triangular lattice is strongly correlated with low-energy
physics controlled by a quasidispersionless band. As a result
of correlations, the band is very narrow and its spectral
weight can be transferred over large energy scales. A band
with such features cannot be described by any weakly
coupled approach. We also find that a metal-insulator transi-
tion occurs at a critical value of the on-site interaction U,
~5.6%0.15¢, which depends very weakly on the size of the
cluster. This value is much lower than the critical interaction
determined by U.=~10.5¢ in CDMFT calculations using ex-
act diagonalization as the impurity solver,' but it is closer to
U.~6.9t, which is the critical interaction obtained by
continuous-time Monte Carlo.!! Finally, we discussed the
pseudogap problem in the context of the Hubbard model on
a triangular lattice. In contrast to the square-lattice case, we
find no evidence for a dip in the density of states positioned
at the chemical potential. However, a momentum-resolved
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analysis shows that the locus of the low-energy excitations of
the weakly hole-doped system is qualitatively different from
that of a noninteracting system. Therefore, we propose a
framework for discussing the pseudogap phenomenon, which
in essence involves a momentum-dependent characterization
of the low-energy physics rather than a momentum-
integrated one. We define a pseudogap state as a state char-
acterized by low-energy excitations occurring only in a rela-
tively small region in momentum space, qualitatively
different from the location of the low-energy quasiparticles
of the noninteracting system, and having an area that shrinks
to zero when approaching the Mott insulator. Consequently,
the system in the pseudogap state is characterized by a re-
constructed Fermi surface consisting of small pockets. We
find that the conditions necessary for the appearance of these
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pockets is a strongly momentum-dependent self-energy
which produces quasiparticles with anisotropic properties
along the Fermi surface. Therefore, the pseudogap is intrin-
sically linked to Mott physics as emphasized recently, which
is the source of the long-range self-energy. Within the reso-
lution of the present calculation, we find that the momentum
dependence of the self-energy is much weaker for the trian-
gular lattice, as compared to the square lattice, leading to a
pseudogap only in the very weak hole-doped regime.
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